IF1006 — DevOps Software
delivery way: DevOps Pipeline

Fish
@fisholito
jfsc@cin.ufpe.br

SXote]

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

@



What is DevOps?

A set of practices to help organizations to deliver
software fast without loss quality — [Culture]



Thinking in process such as practices

* Continuous Delivery/Deployment (Continuous
integration, deployment every time)

* Treat operations personnel as first class citizen.

* Promote and support change of roles and sharing of
knowledge.

* Apply software engineering disciplines on
infrastructure code development (eg. shell scripts)



CDe vs CD

CONTINVUOUS TDELIVERY

ﬁﬁm Tr'E'_':]

Imagine what you need to do for get a fully Continuous Deployment environment?

Edited From: Yassal Sundman




Pipeline, an approach that intercepts DevOps
practices

BUILD, CODE USER
(\:/g ;_srllg (;l L ANALISYS, ACCEPTANCE
UNIT TEST TESTS

DEVELOPER

A pipeline is an abstraction of the delivery process
(from construction until user).
The tool set are its encarnation.



Pipeline, how deep are you?

«

BUILD, CODE USER
(\:/g ::-Srls (I)“ L ANALISYS, ACCEPTANCE
UNIT TEST TESTS

DEVELOPER

Have you control of whole pipeline?



Currently, this a tipical pipeline that I've seen

VERSION BUILD, CODE
CONTROL ANALISYS,
UNIT TEST

However, we will talk about a “full” version
)

DEVELOPER



Pipeline, some tools

&

ia\a
I

Jenkins

BUILD, CODE USER
ANALISYS, ACCEPTANCE
UNIT TEST TESTS

VERSION
CONTROL

o
w
(-8
o
o]
w
>
w
(a]

* Use containers at beginning of development. Here, | inserted ant UAT for convenience



Pipeline, environments

BUILD, CODE USER
ANALISYS, ACCEPTANCE
UNIT TEST TESTS

DEVELOPMENT TESTING UAT PRODUCTION
ENVIRONEMNT ENVIRONMENT ENVIRONMENT ENVIRONEMNT

VERSION
CONTROL

o
w
a.
(@]
-
w
>
(]
(=]



Some important points to have CD

* | need hardware (Cloud) to provide places to run tests;
* | need know laws about data security policies

* How “deep” can | go trough environments. Ex. The
customer don’t let us access his production
environment.

* Will my customer apreciate the idea of deploy in
production for every 11 secs? [amazona aws]



ranching

Feature
for future
release

feature

branches develop

Major
feature for
next release

From this point on,
“next release”
means the release
after 1.0

release

branches hotfixes master

Severe bug
fixed for
production:
hotfix 0.2

Incorporate
bugfixin
develop

\ég ; Tag

0.2

Start of
release
branch for
0

Bugfixes from
rel. branch
may be
continuously
merged back
into develop

1.0

N N
\

o

. > > > >




Branching My > >

From http://nvie.com/



Branching My > >

From http://nvie.com/



Branching My > >

From http://nvie.com/



Branching My > >

From http://nvie.com/



0 N

Uk wWwNE

Build: building a deployable M >

Generating sources.

Compiling sources.

Compiling test sources.

Executing tests (unit tests, integration tests, etc).
Packaging (into jar, war, ejb-jar, ear, rpm).

Running health checks (static analyzers like Checkstyle,
Findbugs, PMD, test coverage, Sonarqube).
encapsulating environments

Generating reports.




Build:Get source M > )

git clone https://github.com/jfsc/spring-petclinic.git




Build: Compiling O DI

Cormpiler

Execitable

andes: ~rcompl/softdev> gec —c green.c

andes: ~rcompl/softdev> 1ls -1s green.o

3 —rw—r—r— 1 13042 users 2312 Mar 13 13:40 green.o

andes: ~rcompl/softdev> file green.o

green.o: ELF 64-bit LSB relocatable, AMD x86-64, version 1 (SYSV), not stripped
andes: ~rcompl/softdev> gcc -c blue.c

andes: ~rcompl/softdev> gec green.o blue.o

andes: ~rcompl/softdev> 1ls -1s a.out

8 —rwxr-xr-x 1 13042 users 7864 Mar 13 13:40 a.out

andes: ~rcompl/scftdev> a.out

Result of Monte Carlc integration is 3.582862

andes: ~rcompl/softdev> gocc -o green green.o blue.o

andes: ~rcompl/softdev> file green

green: ELF 64-bit LSB executable, AMD x86-64, wversion 1 (S8YS8V), for GNU/Linux 2.4.
andes: ~rcompl/softdev> green

Result of Monte Carlco integration is 3.582862

andes: ~rcompl/softdev>

From https://goo.gl/MNLHZI



Build: Compile and run UnitTests w5 5 >

javac -cp .:"/Applications/Intelli) IDEA 13 CE.app/Contents/lib/*" SetTest.java

java -cp .:"/Applications/IntelliJ IDEA 13 CE.app/Contents/lib/*" org.junit.runner.JUnitCore
SetTest

JUnit version 4.11

Time: 0.007
OK (1 test)




Build: Packaging M > >

* (*.JAR;* WAR.*.EAR, *.DLL)
* (*.RPM, *.EXE, *.0)



Build: Code Analysis M > >

SonarQube (*)
Cobertura



Build: Store Envs P > >

e Docker
e VMs



Build:

Store Envs : Docker

Hp» > > >

container

network

manages

|
manages

Cliant
docker CLI

REST API

image

manages —J

data volumes

manages



Build: Store Envs : Docker P > >

Client } [DOCKER_HOST)

docker build -. f.-l,kl Docker daemon

.J \I -n-r'-L. - —
I | -

i \

docker pull - : : *
P .,‘ Cuntalners}— \\ :

docker run —f

Store the wrapped
env here



Testing M 5

 Manual (Exploratory)
* Automatic



UAT:User Acceptance Testing > > > I

* Smoke Tests
e (Customer Validation



PRODUCTION MDD

e Release
* Measurement



Release Management > > D D

“Release management is the process of managing,
planning, scheduling and controlling a software build
through different stages and environments; including
testing and deploying software releases” [wiki]



A Release lifecycle D> > > >

Testing and development period

Pre-alpha
aka
development releases
nightly builds

4
Alpha
¥
Beta
¥

Release Candidate
aka
gamma
delta

+
RTM

Release to Manufacturing
aka
Release to Marketing

GA
General Availability

v

Production or live release

aka
Gold .
i [wik

Release periad



Release Naming D> > > >

1.3 .5

BREAKING . FEATURE . FIX

Breaking New Fixing
change Feature bugs



